Integrate xsin(x).

The technique we need to use to solve this integral is called integration by parts. The parts formula is: the integral of (uv' dx) = uv - the integral of (u'v dx) (where u and v are functions of x). We need to decide which of our functions (x or sin(x)) is our u and which is our v'. To pick our 'u' we consider which function becomes simpler when we differentiate it. In this case this is x since its derivative is 1 whereas the derivative of sin(x) is cos(x) which isn't much simpler. So u = x, v' = sin(x). Which means u' = 1 , v = -cos(x). So our integral becomes: -xcos(x) - the integral of (-cos(x)dx). Giving our final answer of : -xcos(x) + sin(x) + c

Related Further Mathematics A Level answers

All answers ▸

solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.


Why is the argument of a+bi equal to arctan(b/a)?


The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.


Find roots 'a' and 'b' of the quadratic equation 2(x^2) + 6x + 7 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences