Integrate xsin(x).

The technique we need to use to solve this integral is called integration by parts. The parts formula is: the integral of (uv' dx) = uv - the integral of (u'v dx) (where u and v are functions of x). We need to decide which of our functions (x or sin(x)) is our u and which is our v'. To pick our 'u' we consider which function becomes simpler when we differentiate it. In this case this is x since its derivative is 1 whereas the derivative of sin(x) is cos(x) which isn't much simpler. So u = x, v' = sin(x). Which means u' = 1 , v = -cos(x). So our integral becomes: -xcos(x) - the integral of (-cos(x)dx). Giving our final answer of : -xcos(x) + sin(x) + c

Related Further Mathematics A Level answers

All answers ▸

How can the integrating factor method be derived to give a solution to a differential equation?


A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences