Given that y= x^(-3/2) + (1/2)x^4 + 2, Find: (a) the integral of y (b) the second differential of y

This is a typical question for a Core 1 paper. (a) integral of y = (-2)x^(-1/2) + 0.1x^5 + 2x +C Method: Increase the power of x by +1, divide the term through by the new power. (b) dy/dx = (-3/2)x^(-5/2) + 2x^3 + 2 d2y/dx2 = (15/4)x^(-7/2) + 6x^2 Method: Multiply the coefficient of x by its power, then reduce the power of x by 1. This process is completed twice in order to reach the second differential.

Answered by Maths tutor

3225 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Suppose a population of size x experiences growth at a rate of dx/dt = kx where t is time measured in minutes and k is a constant. At t=0, x=xo. If the population doubles in 5 minutes, how much longer does it take for the population to reach triple of Xo.


Edexcel C1 2015 Q10. A curve with equation y = f (x) passes through the point (4, 9). Given that f′(x)=3x^(1/2)-9/(4x^(1/2))+2. Find f(x), giving each term in its simplest form.


A curve has parametric equations x = 2 sin θ, y = cos 2θ. Find y in terms of x


How do you integrate ln(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning