Given that y= x^(-3/2) + (1/2)x^4 + 2, Find: (a) the integral of y (b) the second differential of y

This is a typical question for a Core 1 paper. (a) integral of y = (-2)x^(-1/2) + 0.1x^5 + 2x +C Method: Increase the power of x by +1, divide the term through by the new power. (b) dy/dx = (-3/2)x^(-5/2) + 2x^3 + 2 d2y/dx2 = (15/4)x^(-7/2) + 6x^2 Method: Multiply the coefficient of x by its power, then reduce the power of x by 1. This process is completed twice in order to reach the second differential.

Answered by Maths tutor

3220 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


if a^x= b^y = (ab)^(xy) prove that x+y =1


Solve the following equation: 4(sinx)^2+8cosx-7=0 in the interval 0=<x=<360 degrees.


Find dy/dx when y=(3x-1)^10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning