Solve algebraically the simultaneous equations: 6m + n = 16 and 5m - 2n = 19

The first step of solving simultaneous equations with two unknown variables (m & n in this case) is to rearrange one of the equations so that we get one variable in terms of the other. Lets take the first equation. We can rearrange this to n = 16 - 6m by subtracting 6m from both sides of the equal sign. Now we can substitute this value of n into the second equation, creating 5m - 2 * ( 16 - 6m ) = 19. We now have an equation which is entirely in terms of m, so we can simplify this down by multiplication and subtraction to 5m - 32 + 12m = 19 and then to 17m = 51. If we divide both sides by 17, we get m = 3. Substituting this value of m into the first equation gives 6 * 3 + n = 16, which simplifies to n = -2 by similar arithmetic.

HD
Answered by Harry D. Maths tutor

4598 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Tony buys 12 apples and 7 pears for £10.90. An apple costs 20p less than a pear. What would be the cost of 4 apple and 9 pears?


If the probability of picking a red ball out of bag A is 2/5 and the probability of picking a red ball out of bag B is 3/7, what is the chance that you will pick exactly 2 red balls if you pick 2 balls from A and 1 ball from B? The balls are not replaced.


Five Chocolate bars cost £11. Three Chocolate Bars and two packs of Biscuits cost £13.6. How much does two Chocolate bars and one pack of biscuits cost.


64^-1/3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning