What is the Photoelectric effect?

The photoelectric effect is the stimulated emission of electrons from a (generally metallic) material upon irradiation with light of sufficient energy (light of a short enough wavelength). The incident photons are absorbed by the material, specifically the electrons orbiting the nucleus of the constituent atoms. Depending on the energy of the photon and the type of material being irradiated, the electron may move to a higher energy state, in which, the electron remains constrained to the nucleus still. If, however, the energy of the absorbed photon is large enough, such that the electron has gained enough energy to overcome the attractive electrostatic forces which hold the electron in orbit around the nucleus, the electron is ejected from the nucleus and is ejected into free space, this is known as photoelectric emission. The energy required to overcome the attractive electrostatic forces between the electron and the nucleus is called the workfunction (often denoted by phi). Knowledge of the incident photon's energy (or wavelength/frequency) and the workfucntion of the material, can enable an estimation of the photoelectron's energy and hence its velocity after emission (or vice versa).

Answered by Physics tutor

2091 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An aeroplane lands on the runway with a velocity of 50 m/s and decelerates at 10 m/s^2 to a velocity of 20 m/s. Calculate the distance travelled on the runway.


Single electrons travelling at 550 ms^-1 are passed through a diffraction grating with a spacing between the slits of 2.5 micrometers. What would the angle between the zeroth and first maximum of the resulting interference pattern be?


Explain why objects in free fall drop to the ground at the same speed, regardless of their mass.


Define a geostationary orbit


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences