How do I integrate arctan(x) using integration by parts?

This is an example where we use integration by parts, but it is not immediately obvious where to start.Recall the integration by parts formula ∫u(dv/dx) dx = uv - ∫(du/dx)v dx
KEY STEP:We write arctan(x) = 1 . arctan(x) so that we can set u = arctan(x) and (dv/dx) = 1. Then (du/dx) = 1/(1+x^2) and v = x.
We can now substitute this back into the formula above ∫arctan(x) dx = ∫1 . arctan(x) dx = xarctan(x) - ∫x/(1+x^2) dx
Now the final integral we can recognise to be a natural log integral as d/dx(1+x^2) = 2x. ∫x/(1+x^2) dx = (1/2) ∫2x/(1+x^2) dx = (1/2)ln(1+x^2) + C
Putting all of this together we have finished the integral: ∫arctan(x) dx = xarctan(x) - (1/2)ln(1+x^2) + C.

OC
Answered by Oliver C. Further Mathematics tutor

9713 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Two planes have eqns r.(3i – 4j + 2k) = 5 and r = λ (2i + j + 5k) + μ(i – j – 2k), where λ and μ are scalar parameters. Find the acute angle between the planes, giving your answer to the nearest degree.


It is given that f(x) = 2sinhx+3coshx. Show that the curve y = f(x) has a stationary point at x =-½ ln(5) and find the value of y at this point. Solve the equation f(x) = 5, giving your answers exactly


Find the nth roots of unity.


Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences