Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2

The equation of the line is y=x3+7x2+1To find the equation for the gradient of the line, we need to differentiateDifferentiating gives us dy/dx = 3x2+14xWe can now find the gradient of the curve at any point, if we know the x co-ordinate at that pointWe want to find the gradient of the curve at x=2, so we put this into our equation for dy/dx3(2)2+14(2)=40so we know the gradient of the curve at x=2 is 40

Answered by Charlotte R. Maths tutor

3568 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve (C) with equation y=3x^(0.5)-x^(1.5) cuts the X axis at point A and the origin, calculate the co-ordinates of point A.


Solve the inequality 6x - 7 + x^2 > 0


Two numbers add to make 1000. What would they have to be to maximise their product?


Derive from the standard quadratic equation, the form of the quadratic solution


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences