Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2

The equation of the line is y=x3+7x2+1To find the equation for the gradient of the line, we need to differentiateDifferentiating gives us dy/dx = 3x2+14xWe can now find the gradient of the curve at any point, if we know the x co-ordinate at that pointWe want to find the gradient of the curve at x=2, so we put this into our equation for dy/dx3(2)2+14(2)=40so we know the gradient of the curve at x=2 is 40

Answered by Charlotte R. Maths tutor

3681 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the value of x if the following is true: 3(x – 2) < 8 – 2x


Given that y = x^4 + x^(1/3) + 3, find dy/dx


How do you use factor theorem to show an algebraic term is a factor of a polynomial?


Given that y=(4x+1)^3*sin(2x) , find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences