Solve the curve xy=2 and x+y=3

This question is a simultaneous equation, this means we substitute one value into the other equation.We are looking for the points where the curves intersect.First I would take x+y=3 and bring the y over to the other side. x=3-ySubstitute this into the other curve. (3-y)y=2 and multiply through everything to give y2 -3y+2=0Factorise this to give (y-2)(y-1)=0 and subsequently the values y=1 y=2. The Y coordinates of where the curves touchsubstitute this back into the initial curves to work out the x coordinates.This gives the coordinates of intersection of (2,1) (1,2)

Answered by Peter M. Maths tutor

4248 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write x^2 - 6x +7 in the form (x+a)^2 +b


Solve the simultaneous equations to find x and y: 3y - x = 12 y + 2x = -3


I have invested £10000 for 5 years and I how have £12763 in my account. What is my banks interest rate?


Simplify fully (x^2*x^3)/x^4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences