Solve the curve xy=2 and x+y=3

This question is a simultaneous equation, this means we substitute one value into the other equation.We are looking for the points where the curves intersect.First I would take x+y=3 and bring the y over to the other side. x=3-ySubstitute this into the other curve. (3-y)y=2 and multiply through everything to give y2 -3y+2=0Factorise this to give (y-2)(y-1)=0 and subsequently the values y=1 y=2. The Y coordinates of where the curves touchsubstitute this back into the initial curves to work out the x coordinates.This gives the coordinates of intersection of (2,1) (1,2)

Answered by Peter M. Maths tutor

4283 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sam works for £14 per hour. When Sam works more than 8 hours a day, he is paid overtime for each hour he works more than 8 hours at 1½ times his normal rate of pay. Sam worked for 12 hours. Work out the total amount of money Sam earned.


Factorise 7x^2+4x-3


3x + 2y =4 and 4x - 17 = 5y. Solve the simultaneous equations.


Find an expression for the nth term of this sequence: 3 - 11 - 19 - 27 - 35 . The nth term of a different sequence is 2n^3 + 3. Write down the first 3 terms of this sequence.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences