Differentiate x^x

With the methods we know at A Level we cannot current differentiate xx in its current form. Therefore let y = xxTo turn it into a form we can differentiate we take the natural log of both sides. This gives ln(y) = ln(xx). Using the log rule (logab = bloga) we can then say ln(y) = xln(x). We can then differentiate implicitly to form a differential equation 1/y x dy/dx = ln(x) + 1. To find dy/dx we then simply multiply through by y to give...dy/dx = y(lnx + 1) = xx(lnx + 1)

Answered by Maths tutor

3049 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line L1 has vector equation,  L1 = (  6, 1 ,-1  ) + λ ( 2, 1, 0). The line L2 passes through the points (2, 3, −1) and (4, −1, 1). i) find vector equation of L2 ii)show L2 and L1 are perpendicular.


Find dy/dx of the equation y=x^2 ln⁡(2x^2+1).


How would you sketch the curve of a graph?


The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning