Given that y = (3x^4 + x)^5, find dy/dx using the chain rule.

Let u = 3x4 + x
du/dx = 12x3 + 1
y = u5
dy/du = 5u4
Using the chain rule, dy/dx = dy/du x du/dx
= 5u4 (12x3 + 1)
dy/dx = 5(3x4 + x)(12x3 +1)

Related Maths A Level answers

All answers ▸

How does integration by parts work?


Consider f(x)=a/(x-1)^2-1. For which a>1 is the triangle formed by (0,0) and the intersections of f(x) with the positive x- and y-axis isosceles?


The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.


What is the indefinite integral of (x^4)*(-sin(x)) dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences