How do I identify that the coordinate (2,3) is the maximum point of the curve f(x)?

Start by finding the first derivative of the function - by differentiating f(x) with respect to x. Then substitute the x-coordinate, in this case 2, into the first derivative and it will equal zero if (2,3) is a stationary point.Then differentiate f(x) again to obtain the second derivative.Now you must substitute the x-coordinate, 2 , into the 2nd derivative of f(x) and if the answer is less than zero then (2,3) is a maximum.

Answered by Maths tutor

3620 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is thrown in the air. The height of the ball at time t is given by: h=5+4t-2t^2. What is its maximum height? At what time does the ball reach this height?


Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


I don't understand why the function "f(x)=x^2 for all real values of x" has no inverse. Isn't sqrt(x) the inverse?


Differentiate y=x*ln(x^3-5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning