P is a point on a circle with the equation x^2 + y^2 = 45. P has x-coordinate 3 and is above the x axis. Work out the equation of the tangent to the circle at point P.

First insert x = 3 into the equation of the circle3^2 + y^2 = 459 + y^2 = 45 take 9 away from both sidesy^2 = 36 take the square root of both sidesy = 6 (not -6 as P is above the x-axis)Next find the gradient of the tangent. First find the gradient of the normal. Since the centre of the circle is at (0,0), the gradient (change in y/ change in x) is 6/3 = 2. This means that the gradient of the tangent is -1/2 (the negative reciprocal of the gradient of the normal).Finally, to find the equation of the tangent at P, use the formula y + y' = m(x - x').y + 6 = -1/2(x - 3) expand and simplify to the form y = mx + cy = -1/2x - 9/2 (or to remove fractions 2y + x = -9)

Answered by Emily W. Maths tutor

2765 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

We are given a right angled triangle with one side of unknown length. The shortest side is 3cm long, and the longest side is 5cm long. Calculate the remaining side.


The equation of line L1 is y=5x-2. The equation of line L2 is 4y-20x=6. Show that these two lines are parallel.


The probability of pulling out a coloured counter from a bag is shown below: Green=0.2. Purple=0.15. Black=0.3. Pink=?. What is the probability of pulling out a pink counter?


y=2x+5, calculate x when y=11


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences