Solve the simultaneous equation x+y=11(1), x^2+y^2=61 (2)

Make x the subject in the equation x+y=11(1). This will help us eliminate x in the second equation (2).x=11-y (3)Substitute (3) into (2)(11-y)2+y2=61Expanding the brackets and simplifying gives 2y2-22y+60=0Dividing the whole equation by 2 gives y2-11y+30=0 (4)(4) is a quadratic equationFactorise, giving (y-5)(y-6)=0There are therefore two solutions, y=5 or y=6Looking back at equation (1), when y=5, x=6when y=6, x=5
Therefore the two solutions are:x=6 y=5x=5 y=6

Answered by Maths tutor

4336 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation: 16y^3 +9x^2y-54x=0, find the x coordinates of the points on C where dy/dx = 0


How would you determine what sort of stationary point this curve has? x^3 - 6x^2 + 9x - 4


Express x^2-4x+9 in the form (x-p)^2+q where p and q are integers


Solve for 0 =< x =< 360 16/(cos(x+25)+1) = 10, give answers to 2 d.p.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning