Solve the simultaneous equation x+y=11(1), x^2+y^2=61 (2)

Make x the subject in the equation x+y=11(1). This will help us eliminate x in the second equation (2).x=11-y (3)Substitute (3) into (2)(11-y)2+y2=61Expanding the brackets and simplifying gives 2y2-22y+60=0Dividing the whole equation by 2 gives y2-11y+30=0 (4)(4) is a quadratic equationFactorise, giving (y-5)(y-6)=0There are therefore two solutions, y=5 or y=6Looking back at equation (1), when y=5, x=6when y=6, x=5
Therefore the two solutions are:x=6 y=5x=5 y=6

Related Maths A Level answers

All answers ▸

What is a derivative and how are they used?


The curve C has equation y = 2x^2 - 12x + 16 Find the gradient of the curve at the point P (5, 6).


With log base 4, solve log(2x+3) + log(2x+15) = 1 + log(14x+5)


Find the derivative of x(x+3)^5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences