Solve the simultaneous equation x+y=11(1), x^2+y^2=61 (2)

Make x the subject in the equation x+y=11(1). This will help us eliminate x in the second equation (2).x=11-y (3)Substitute (3) into (2)(11-y)2+y2=61Expanding the brackets and simplifying gives 2y2-22y+60=0Dividing the whole equation by 2 gives y2-11y+30=0 (4)(4) is a quadratic equationFactorise, giving (y-5)(y-6)=0There are therefore two solutions, y=5 or y=6Looking back at equation (1), when y=5, x=6when y=6, x=5
Therefore the two solutions are:x=6 y=5x=5 y=6

Related Maths A Level answers

All answers ▸

Use logarithms to solve the equation 2^5x = 3^2x+1 , giving the answer correct to 3 significant figures.


If y = (4x^2)ln(x) then find the second derivative of the function with respect to x when x = e^2 (taken from a C3 past paper)


A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block ...


Differentiate 6x^2+2x+1 by first principles, showing every step in the process.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences