Prove that the square of an odd number is always 1 more than a multiple of 4

An odd number can be expressed by the formula "2n + 1" where n stands for any integer. Therefore, the square of any odd number can be expressed as:(2n+1)^2 = (2n+1)(2n+1) = 4n^2 + 4n + 1 = 4(n^2 + n) + 1As 4(n^2 + n) is necessarily a multiple of 4, it is therefore clear that 4(n^2 + n) + 1 is 1 more than a multiple of four. Therefore the square of any odd number is 1 more than a multiple of 4

Answered by Edward B. Maths tutor

2837 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sam uses 140g of flour to make 12 cakes. How much flour will Sam need to make 21 cakes?


How do I apply the correct formulae and other methods to difficult looking questions?


There is a quarter circle with radius 8cm, what is the area of the quarter circle. The answer should be given in terms of pi, units are cm^2.


Make x the subject of the equation. 7xy+6 = 18x+3y+7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences