Prove that the square of an odd number is always 1 more than a multiple of 4

An odd number can be expressed by the formula "2n + 1" where n stands for any integer. Therefore, the square of any odd number can be expressed as:(2n+1)^2 = (2n+1)(2n+1) = 4n^2 + 4n + 1 = 4(n^2 + n) + 1As 4(n^2 + n) is necessarily a multiple of 4, it is therefore clear that 4(n^2 + n) + 1 is 1 more than a multiple of four. Therefore the square of any odd number is 1 more than a multiple of 4

EB
Answered by Edward B. Maths tutor

3580 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How can I draw a 30 degree angle without a protractor?


How do I make calculations with percentages?


Solve this simultaneous equation for x: 3x + y = 10, x + y = 4


Kevser buys 5kg of sweets for £10. She separates the sweets so that there are 250g of sweets in each bag. She sells each bag for 65p. She sells all bags. What is her percentage profit?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning