For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).

For a second order differential equation, our auxiliary equation, am2+bm+c=0, has two roots. Let's denote these roots as A and B. Note that A and B can be the same if there is a repeated root, but we're not considering that case here, and that A and B are not the same constants here as the ones used in the question.Now, we know that the solution to our differential equation will have the following form: y(x)=CeAx+DeBx. As we know our roots are a complex conjugate pair, we can rewrite A and B as (m+in) and (m-in), where m and n are real constants: y(x)=Ce(m+in)x+De(m-in)x=> y(x)=Cemx+inx+Demx-inx. By laws of exponents, we can rewrite y(x) as follows: y(x)=Cemxeinx+Demxe-inx. By factoring out emx, we have the following: y(x)=emx(Ceinx+De-inx). Now, by Euler's Identity, we can rewrite our einx and e-inx terms. Recalling that eikX=cos(kX)+isin(kX), we have: y(x)=emx(C[cos(nx)+isin(nx)]+D[cos(-nx)+isin(-nx)]). By distributing the constants C and D into the brackets, and recalling that cos(-X)=cos(X) (as cos(x) is an even function) and sin(-X)=-sin(X) (as sin(x) is an odd function), we find: y(x)=emx(Ccos(nx)+Cisin(nx)+Dcos(nx)-Disin(nx)) => y(x)=emx((C+D)cos(nx)+i(C-D)sin(nx)). Now, if we let C+D=A and C-D=B, where A and B are real constants, we have the following result: y(x)=emx(Acos(nx)+Bisin(nx)), as required. Note that the constants A and B here represent the constants in the question rather than the A and B used earlier in our answer.

JB
Answered by Joshua B. Further Mathematics tutor

2563 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The cubic equation 27(z^3) + k(z^2) + 4 = 0 has roots α, β and γ. In the case where β=γ, find the roots of the equation and determine the value of k


Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.


Find the square roots of 2 + isqrt(5)


A=[5k,3k-1;-3,k+1] where k is a real constant. Given that A is singular, find all the possible values of k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning