Prove that the square of an odd number is always 1 more than a multiple of 4

First, we need to define what an odd number is. An odd number can be expressed as the product of 2n+1, where n can be any whole number bigger than 0. You can check this by inputting a few numbers for n (say 1,2,3) and making sure they're odd.Now, to find the square of any odd number, we square the expression we just came up with - remembering to fully multiply out our brackets (i.e multiply all the individual components together, and add the like terms)(2n+1)^2= (2n+1)(2n+1)= 4n^2 + 4n + 1Let's have another look at the question - it originally asked us to prove that an odd number is one bigger than a multiple of 4. Now if we look at the expression we came up with, we notice that the first two terms can be factorised into a simpler expression, as they both share 4 and n, as a factor. Here, we're only trying to prove it's bigger than a multiple of 4. Therefore, we can simply express (2n+1)^2= 4(n^2 + n) + 1So for any n, the product will be muliplied by 4, then plus 1.

Answered by Emanuel D. Maths tutor

3196 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Jules buys a washing machine. 20% VAT is added to the price of the washing machine. Jules then has to pay a total of £600 What is the price of the washing machine with no VAT added?


Express 56 as a product of prime factors in its simplest form


(a) show that 3/10 + 2/15 = 13/30 (b) show that 2 5/8 ÷ 1 1/6 = 2 1/4


A teacher is chosen at random. The probability that the teacher is female is 3/5. There are 36 male teachers. How many teachers in total work at the school?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences