Differentiate sin(2x)/x^2 w.r.t. x

Quotient Rule:d(u/v)/dx = (vu' - uv')/(v2)u = sin(2x) => u' = 2cos(2x)v = x2 => v' = 2x=> (2x2cos(2x) - 2xsin(2x))/(x4)Product Rule:d(uv)/dx = vu' + uv'u = sin(2x) => u' = 2cos(2x)v = 1/x2 = x-2 => v' = -2x-3=> 2x-2cos(2x) - 2x-3sin(2x)

VL
Answered by Vinh L. Maths tutor

8288 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stable points of the following function, determine wether or not they are maxima or minima. y= 5x^3 +9x^2 +3x +2


How do you integrate ln(x)?


Why does a 'many to one' function not have an inverse?


i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences