Calculate the integral of ln(x)

Calculating the integral of ln(x) is harder than it might look and must be done using integration by parts, where the two parts are 1 and ln(x). The integration by parts formula is as follows
integral{udv) = uv - integral{vdu},
where ln(x) is u and 1 is dv. Next, du and v need to be calculated and these are 1/x and x respectively. Following this, plug u, du and v into the formula and you will get xln(x) - integral{x * 1/x}. Calculating this final integral will give you integral{ln(x)} = xln(x) - x + C , where C is a constant. 

CR
Answered by Callum R. Maths tutor

3221 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area between the curve y = 8 + 2x - x^2 and the line y = 8 - 2x.


The line l1 has equation y = −2x + 3. The line l2 is perpendicular to l1 and passes through the point (5, 6). (a) Find an equation for l2 in the form ax + by + c = 0, where a, b and c are integers.


Why does the constant disappear when differentiating a function?


Find the equation of a Circle with centre (2,9) and radius 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning