Find the stationary points of y = 4(x^2 - 4)^3

This question challenges the student's ability to use the chain rule and to understand what a stationary point is. Having recognised that the chain rule is required, the first step is to use the substitution u = x^2-4 so that our function can be rewritten as y = 4u^3. Now, differentiating y with respect to u we find dy/du = 12u^2. Similarly, differentiating u with respect to x we find du/dx = 2x. The chain rule dictates that dy/dx = dy/du * du/dx. Inserting our expressions for dy/du and du/dx one finds that dy/dx = 24x * u^2 = 24x(x^2 - 4)^2. Stationary points occur when dy/dx = 24x(x^2 - 4)^2 = 0 so x=0 or x^2 = 4 => x = 2 or x = -2. When x = -2, y = 0; when x = 2, y = 0; when x = 0, y = -256. (Looks much prettier on a whiteboard!)

Answered by Tom L. Maths tutor

2905 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find D when 8x^3-12x^2-2x+D is divided by 2x+1 when the remainder is -2


Integrate 4x^3 + 6x^2 +4x + 3


A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


Solve the equation: log5 (4x+3)−log5 (x−1)=2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences