Show by induction that sum_n(r*3^(r-1))=1/4+(3^n/4)*(2n-1) for n>0

Base Case n=1sum_1(r3^(r-1))=13^0=1=1/4+(3^1/4)(2-1)=1/4+3/4=1
Assume true for n=ki.e. sum_k(r
3^(r-1))=(3^k/4)(2k-1)
then for n=k+1sum_(k+1)(r
3^(r-1))= sum_k(r3^(r-1))+(k+1)3^k =(3^k/4)(2k-1)+(k+1)3^k =(3^k/4)(2k-1+4k+4)=(3^k/4)(6k+3)=(3^(k+1)/4)(2k+1)=(3^(k+1)/4)(2*(k+1)-1)
Therefore by inductionsum_n(r3^(r-1))=1/4+(3^n/4)(2n-1) for n>0

Related Maths A Level answers

All answers ▸

Solve 4x/(x+1) - 3/(2x+1) = 1


Find the derivative of sinx, use that to find the derivative of xsinx


Find the max/min value of the function: f(x) = 5x^2 - 20x + 15


Integrate xsin(2x) by dx between the limits 0 and pi/2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences