Show by induction that sum_n(r*3^(r-1))=1/4+(3^n/4)*(2n-1) for n>0

Base Case n=1sum_1(r3^(r-1))=13^0=1=1/4+(3^1/4)(2-1)=1/4+3/4=1
Assume true for n=ki.e. sum_k(r
3^(r-1))=(3^k/4)(2k-1)
then for n=k+1sum_(k+1)(r
3^(r-1))= sum_k(r3^(r-1))+(k+1)3^k =(3^k/4)(2k-1)+(k+1)3^k =(3^k/4)(2k-1+4k+4)=(3^k/4)(6k+3)=(3^(k+1)/4)(2k+1)=(3^(k+1)/4)(2*(k+1)-1)
Therefore by inductionsum_n(r3^(r-1))=1/4+(3^n/4)(2n-1) for n>0

Answered by Maths tutor

3295 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(Core 3 level) Integrate the function f(x) = 2 -cos(3x) between the bounds 0, pi/3.


(ii) Prove by induction that, for all positive integers n, f(n) = 3^(3n–2) + 2^(3n+1) is divisible by 19


When you integrate a function why do you add a constant?


If n is an integer such that n>1 and f(x)=(sin(n*x))^n, what is f'(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning