Show by induction that sum_n(r*3^(r-1))=1/4+(3^n/4)*(2n-1) for n>0

Base Case n=1sum_1(r3^(r-1))=13^0=1=1/4+(3^1/4)(2-1)=1/4+3/4=1
Assume true for n=ki.e. sum_k(r
3^(r-1))=(3^k/4)(2k-1)
then for n=k+1sum_(k+1)(r
3^(r-1))= sum_k(r3^(r-1))+(k+1)3^k =(3^k/4)(2k-1)+(k+1)3^k =(3^k/4)(2k-1+4k+4)=(3^k/4)(6k+3)=(3^(k+1)/4)(2k+1)=(3^(k+1)/4)(2*(k+1)-1)
Therefore by inductionsum_n(r3^(r-1))=1/4+(3^n/4)(2n-1) for n>0

Related Maths A Level answers

All answers ▸

(5 + 2(2^0.5))(7 - 3(2^0.5))


The quadratic equation 2x^2 + 8x + 1 = 0 has roots a and b. Write down the value of a + b, a*b and a^2 + b^2.


Find R and a such that 7*cos(x)+3*sin(x)=Rcos(x-a)


How do you differentiate y=x^x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences