Determine an approximate value for the acceleration of free fall using a tennis ball, metre ruler and a stopwatch.

Drop the ball from a given height that is measured with the ruler and measure the time it takes for it to reach the ground using the stopwatch. Use the appropriate SUVAT equation of motion: we have a height (vertical displacement, acceleration only acts downwards due to gravity) and a time, and would like to calculate acceleration. Hence we need s = ut + 1/2 at2, where "s" is the height from which the ball was dropped, "u" is initial velocity which is 0, "t" is the time of dropping and "a" is the acceleration which we would like to find out. Reorder the equation for "a": a=2*s/t2 and substitute in the known values. Repeat this a few times and take an average due to measurement errors and for better reliability of the experiment.

Answered by Viktoria N. Physics tutor

9943 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is thrown vertically downwards at a speed of 10ms^-1 from a height of 10m. Upon hitting the floor 10% of the energy is dissipated through waste heat. What is the heighest point the ball reaches before it comes to rest? Take g=10ms^-2


What is an inertial frame of reference?


What is the difference between a scalar and a vector?


How does circular motion work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences