The perimeter of a right-angled triangle is 60 cm. The lengths of its sides are in the ratio 3 : 4 : 5. Calculate the area of the triangle.

We are given ratios of side lengths and the total perimeter. The perimeter of the triangle is simply the sum of the side lengths. Imagine that the sides are made up of "units": 3 times a unit + 4 times the same unit + 5 times the same unit is equal to the perimeter (based on the ratios). Mathematically: 3x+4x+5x = 60, x = 5cm. So one of these "units" is equal to 5cm, which means the sides are 35=15 cm, 45 = 20 cm and 55 = 25 cm (Double check: 15+20+25 = 60 indeed!) Because the triangle is right-angled, the longest side is the hypotenuse and the two shorter sides are the legs. The area of a right-angled triangle can be calculated by multiplying the length of the two legs and dividing it by 2: 1520/2 = 150cm2

VN
Answered by Viktoria N. Maths tutor

3003 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Anouk, Beth and Carlin share £48 between them. Beth gets 3/8 of the money. Anouk and Carlin share the remaining money between them, by the ratio 3:2. How much money does Carlin get?


Solve the following simultaneous equation: x^2 + y^2 = 9 X+y=2


What is the domain and what is the range


X^2+4x-21=0 Solve for x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning