Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.

Firstly we need to integrate f(x). The general rule is: the integral of x^n = (1/(n+1))x^(n+1)+CSo apply that rule to each term of f'(x) as so:Integral of 18x^2 = (18/(2+1))x^(2+1) = 6x^3Integral of -24x = (-24/(1+1))x^(1+1) = -12x^2Integral of -6 = (-6/(0+1))x^(0+1) = -6xThen put the parts back together to give f(x) = 6x^3-12x^2-6x+c remebering to add the plus c at the end from our general rule.Once we have this equation we can use the points we are given to calculate the value of C. To do this we insert our values of x and y to give40 = 6(3^3) - 12(3^2) - 6(3) + C = 162 - 108 - 18 +C = 36 +CWe then rearrange to find C, by subtracting 36 from both sides40 - 36 = C + 36 - 364 = CNow we have our value of C we can sub it back into the equation to give our final value of f(x) as:f(x) = 6x^3 - 12x^2 -6x +4

HB
Answered by Henry B. Maths tutor

3181 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.


y = 4x^3 - 5/x^2 Find dy/dx


How do I calculate the reactant forces for the supports of the beam where the centre of mass is not same distance from each support?


Simplify: (log(40) - log(20)) + log(3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning