Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis

To solve this problem we need a formula. Integral of y2dx multiplied by pie. First we square the questions of the curve we are given (sinx)2 . Next we apply double angle formula to reduce the power so we can integrate 1/2(1-cos2x) to get 1/2x - 1/4sin2x. We would then substitute the limits into this equation to get an answer.

AM
Answered by Anthony M. Further Mathematics tutor

3111 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you find the general solution of a second order differential equation?


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


Show that the square of any odd integer is of the form (8k+1)


Find the general solution of the differential equation d^2y/dx^2 - 5*dy/dx + 4y = 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning