A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0. Find dy/dx and d^2y/dx^2. Verify that C has a stationary point when x = 4

Using the differentiation rule that d (Ax^b)/dx = Abx^(b-1) we find dy/dx = 2x -2 -12x^(-1/2).Similarly, taking care to see that the -2 term becomes zero since it is not dependent on x, we haved^2y/dx^2 = 2 + 6x^(-3/2).By substituting the value x = 4 into our expression of dy/dx we have2x4 -2 -12x(4^(-1/2)) = 0. Hence we have a stationary point at the value x = 4.

AW
Answered by Alexa W. Further Mathematics tutor

2552 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


a) Find the general solution to the differential equation: f(x)=y''-12y'-13y=8. b) Given that when x=0, y=0 and y'=1, find the particular solution to f(x).


Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).


Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning