A 1000 cm3 container of ammonia (NH3) has a mass of 20.7g, it is stored at room temperature (298 K). When empty the container has a mass of 20.0 g, calculate the pressure inside the container in kPa to an appropriate number of significant figures.

  1. Using PV = nRT, make a note of the information you have, what you can calculate and what you need to find. P <-- need to find thisV = 1000 cm3n <-- can be calculated from mass = mr X mol since we know massR = 8.314 J K-1 mol-1 (from data book)T = 298 K2) convert 1000 cm3 to m3 (SI units)1000/ (100)3 divide by 100 for cm --> m conversionneed to do this 3x since volume has 3 dimensions1000/ (100)3 = 10-3 m3
    3) n (number of moles) = mass/ mr = (20.7g-20.0g)/14 g mol-1 = 0.05 mol4) now we have everything we need in SI unitsP <-- need to find thisV = 10-3 m3n = 0.05 molR = 8.314 J K-1 mol-1 (from data book)T = 298K
    5) P = nRT/V (rearrange equation to make P the subject)P = (0.05 mol x 8.314 J K-1 mol-1 x 298 K)/ 10-3 m3P = 123,879 Pa or 124 kPa
Answered by Natalie B. Chemistry tutor

1858 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

(i) What property does Magnesium Oxide have that makes it useful to create heat-resistant bricks to line furnaces? (ii) Explain why H2S exists as a gas and H2O exists as a liquid (at r.t.p).


Write an ionic equation, with state symbols, to show the reaction of calcium with an excess of water.


Elements in the Periodic Table often show periodic trends. Describe and explain the periodic trend in atomic radius and electronegativity from Na to Cl.


Elements in the periodic table show a trend in atomic radius. State and explain the trend in atomic radius from Li to F.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences