A 1000 cm3 container of ammonia (NH3) has a mass of 20.7g, it is stored at room temperature (298 K). When empty the container has a mass of 20.0 g, calculate the pressure inside the container in kPa to an appropriate number of significant figures.

  1. Using PV = nRT, make a note of the information you have, what you can calculate and what you need to find. P <-- need to find thisV = 1000 cm3n <-- can be calculated from mass = mr X mol since we know massR = 8.314 J K-1 mol-1 (from data book)T = 298 K2) convert 1000 cm3 to m3 (SI units)1000/ (100)3 divide by 100 for cm --> m conversionneed to do this 3x since volume has 3 dimensions1000/ (100)3 = 10-3 m3
    3) n (number of moles) = mass/ mr = (20.7g-20.0g)/14 g mol-1 = 0.05 mol4) now we have everything we need in SI unitsP <-- need to find thisV = 10-3 m3n = 0.05 molR = 8.314 J K-1 mol-1 (from data book)T = 298K
    5) P = nRT/V (rearrange equation to make P the subject)P = (0.05 mol x 8.314 J K-1 mol-1 x 298 K)/ 10-3 m3P = 123,879 Pa or 124 kPa
Answered by Natalie B. Chemistry tutor

1578 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

You added 75cm^3 of 0.5moldm^-3 HCl to impure MgCO2, and some was left unreacted. The unreacted HCl reacted completely with 21.6cm^m of 0.5moldm^-3 NaOH. So what is the percentage purity of the MgCO3 sample?


BeCl2 has a linear shape with a bond angle of 180 degrees, where as H2O has a bent shape with a bond angle of 104.5 degrees. Explain why these molecules have different shapes despite having the same general formula of AB2.


For the following reaction, you obtained 7.2 g of sodium sulfate, starting from 10 g of sulfuric acid. Sodium hydroxide is in excess. What is the % yield? H2SO4 + 2NaOH → Na2SO4 + 2H2O


Giving the electronic configurations for each element, predict the trend in 1st ionisation energies going across period 2 from Lithium to Neon.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences