A curve has equation y = 3x^3 - 7x + 10. Point A(-1, 14) lies on this curve. Find the equation of the tangent to the curve at the point A.

Firstly, we define a tangent as a straight line touching a curve at 1 point only.We can describe a straight line using this linear relation:y - y1 = m.(x - x1)We know a point on this line A(-1, 14) = (x1, y1). Hence, all we need is the gradient m, to find it's equation.The tangent and curve share the same gradient at point A . We have the curve's equation and can use it to find this gradient.We need an equation that describes the curve's gradient, dy/dx, in terms x. Hence we must differentiate our equation y = 3x3 -7x +10 as follows:dy/dx = 9x2 - 7To find the gradient at A(-1, 14), we sub in x = -1, hence,dy/dx = 9(-1)2 - 7 = 2Now substituting the gradient m = 2 and coordinates of point A into the original linear relation, we can find our equation in the form y = mx + c,y - 14 = 2(x + 1)Answer: y = 2x +16

Answered by Joshua P. Maths tutor

3799 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The arithmetic series is given by (k+1)+(2k+3)+(3k+5)+...+303. a)Find the number of term in the series in terms of k. b) Show that the sum of the series is given by (152k+46208)/(k+2). c)Given that S=2568, find k.


y = 2/x^3 find and expression for dy/dx


A Block of mass 2kg is on an a smooth inclined plane where sin@ = 3/5 at point A. Point B is 5 meters down the incline. Find the time it will take for the block to reach point given it is at rest at point A.


Find the stationary points of y = (x-7)(x-3)^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences