Solve the equation sin2x = tanx for 0° ≤ x ≤ 360°

sin2x = tanx Take everything to left hand side, so LHS equals 0sin2x - tanx = 0Recall double angle formula : sin2x = 2sinxcosx, also notice that tanx can be written as sinx/cosx giving us:2sinxcosx - sinx/cosx = 0 (gives us everything in terms of sinx and cosx)Multiply everything by cosx to get rid of the fraction2sinxcos2x -sinx = 0Notice sinx is common in both terms so we can now simplifysinx*(2cos2x-1) = 0This now means that either sinx =0 or 2cos2x-1 =0For sinx = 0sinx = 0, use inverse sin function on calculator and use CAST diagram or alternatively use y = sinx graph (in range 0° to 360° inclusive) to see where the graph cuts the x axis when y =0, which gives:x = 0°, 180°, 360°For 2cos2x-1 = 0cos2x= 0.5cosx = ±√0.5, which meanscosx = √0.5 and cosx =-√0.5Using inverse cos function on calculator of 0.5:x = 45°Plot x = 45° in cast diagram for positive cos and negative cos, which gives:x = 45°,135°,225°,315°Final answer: x = 0°, 180°, 360° or x = 45°,135°,225°,315°


Answered by Shea M. Maths tutor

18874 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (3x^2 - 6x)/ (6x^3 - 19x^2 + 9x +10)


f(x) = 2 / (x^2 + 2). Find g, the inverse of f.


A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.


Find the area of the region, R, bounded by the curve y=x^(-2/3), the line x = 1 and the x axis . In addition, find the volume of revolution of this region when rotated 2 pi radians around the x axis.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences