Using a Taylor's series or otherwise; derive Euler's Formula

Use the Taylor series expansion for the following three functions: f(θ) = e^(iθ), g(θ) = cos(θ) and h(θ) = sin(θ). We should find that f(θ) = e^(iθ) = 1 + iθ - (θ^2/2!) - i(θ^3/3!) + ... = Sum(θ^n/n!), g(θ) = cos(θ) = 1 - (θ^2/2!) + (θ^4/4!) - (θ^6/6!) + ... = Sum((-1)^n . (θ^2n))/2n!) and finally, g(θ) = sin(θ) = θ - (θ^3/3!) + (θ^5/5!) + ... = Sum((-1)^n . (θ^2n+1))/2n+1!). Now it is a case of manipulating a our results for our functions to match Euler's Formula. Since we know e^(iθ) = cos(θ) + isin(θ) is Euler's Formula, and that we've been asked to use a Taylor series expansion, it is just a case of algebraic manipulation, starting from either the LHS or the RHS to achieve the other part of the equation.Let's start from the LHS (for powers of θ up to 5) : e^(iθ) = 1 + iθ - (θ^2/2!) - i(θ^3/3!) + (θ^4/4!) + i(θ^5/5!) - ... = (1 - (θ^2/2!) + (θ^4/4!) - ...) + i(θ - (θ^3/3!) + (θ^5/5!) - ...) and so on. If you notice the first term corresponds to the Taylor expansion of cos(θ) and the second to the expansion of i(sin(θ)) and hence we can say that e^(iθ) = cos(θ) + isin(θ) and the derivation of Euler's Formula using a Taylor's series is complete.

Related Further Mathematics A Level answers

All answers ▸

Two planes have eqns r.(3i – 4j + 2k) = 5 and r = λ (2i + j + 5k) + μ(i – j – 2k), where λ and μ are scalar parameters. Find the acute angle between the planes, giving your answer to the nearest degree.


Given that z = a + bj, find Re(z/z*) and Im(z/z*).


A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences