Particles P and Q move in a plane with constant velocities. At time t = 0 the position vectors of P and Q, relative to a fixed point O in the plane, are (16i - 12j) m and -5i + 4j) m respectively. The velocity of P is (i + 2j) m/s and the velocity of Q

is (2i + j) m/s. Find the shortest distance between P and Q in the subsequent motion. This is an m4 question from the edexcel June 2015 paper. First I would explain to the student that I would form an equation equating the distance to the position vector of Q subtracted from the postion vector of P. Then I would tell the student that the next step is to find the square of the absolute distance by squaring the coefficient of the i and j vectors and adding them. After this the equation should be differentiated with respect to t.The differential will be equal to 0, as it is a minimum. This will be used to solve t and then the value of t will be substituted into the initial distance equation and then Pythagoras's theorem will be used to find the distance.

Answered by Further Mathematics tutor

2615 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


Why is the argument of a+bi equal to arctan(b/a)?


How do I find the inverse of a 3x3 matrix?


Solve the following, giving your answers in terms of ln a: 7 sechx - tanhx =5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning