Express (3-5x)/(x+3)^2 in the form A/(x+3) + B/(x+3)^2

A needs to be multiplied up by x+3 to make the fraction have the same in denominator as the other expressions. Then you need to equate the numerators. 3 - 5x = A(x+3) + B
You can gain two simultaneous equations from this equation, those with an x multiplier and those without:-5 = A3 = 3A + Binput A:3 = -15 + B
rearrange to find B.
Answer is therefore: 18/(x+3)^2 - 5/(x+3)

Related Maths A Level answers

All answers ▸

The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.


Show that the equation 5sin(x) = 1 + 2 [cos(x)]^2 can be written in the form 2[sin(x)]^2 + 5 sin(x)-3=0


Find the set of values for which: x^2 - 3x - 18 > 0


How do you integrate by parts?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences