Using Pythagoras' theorem, show that sin^2(x)+cos^2(x)=1 for all x.

Take a right angled triangle with hypotenuse of length 1, and angle at the bottom of the hypotenuse equal to x. We will let o denote the length of the side opposite the angle, and a denote the length of the side adjacent to the angle.
Using SOHCAHTOA, we know that sin(x)=o/1=o, and cos(x)=a/1=a.
So we now have a right angled triangle with a hypotenuse of length 1, another side of length sin(x), and a side of length cos(x). Using Pythagoras' theorem, we know that o^2+a^2=1^2, and so sin^2(x)+cos^2(x)=1.

Related Maths A Level answers

All answers ▸

Use integration to find I = ∫ xsin3x dx


How to factorise 6x^2-11x-10?


Integrate with respect to x ) dy/dx= 6x^5


How do you prove a mathematical statement via contradiction?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences