Evaluate the indefinite integral when the integrand function is tan(x).

To solve this problem we will use a clever substitution to easily integrate and thus obtain the answer.First we can represent tan(x) as its fractional equivalent sin(x)/cos(x), assigning the variable u to cos(x) then du/dx is -sin(x).Having this in mind, we can rearrange the trigonometric fraction to the equivalent form (-) -sin(x)/cos(x) by simply factorising out a -1.Now its easier to see the substitution: (-)du/u (note the dx from the denominator cancels out with that of the integrand).
Finally complete the integration of -du/u, which is -ln(u) + C where C is a constant. Back-substitute the value of u to have -ln(cos(x)) + C. Note this can be written in the form as ln(cos(x)-1) or ln(sec(x)). So the indefinite integral of tan(x) is ln(sec(x)) + C.

Answered by Jose Nicolas B. Maths tutor

2605 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate an algebraic expression? (e.g. y=3x^4 - 8x^3 - 3) [the ^ represents x being raised to a power]


Circle C has equation x^2 + y^2 - 6x + 4y = 12, what is the radius and centre of the circle


How to find and classify stationary points (maximum point, minimum point or turning points) of curve.


Find the first derivative of f(x). f(x) = ln(3x^2+2x+1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences