Evaluate the indefinite integral when the integrand function is tan(x).

To solve this problem we will use a clever substitution to easily integrate and thus obtain the answer.First we can represent tan(x) as its fractional equivalent sin(x)/cos(x), assigning the variable u to cos(x) then du/dx is -sin(x).Having this in mind, we can rearrange the trigonometric fraction to the equivalent form (-) -sin(x)/cos(x) by simply factorising out a -1.Now its easier to see the substitution: (-)du/u (note the dx from the denominator cancels out with that of the integrand).
Finally complete the integration of -du/u, which is -ln(u) + C where C is a constant. Back-substitute the value of u to have -ln(cos(x)) + C. Note this can be written in the form as ln(cos(x)-1) or ln(sec(x)). So the indefinite integral of tan(x) is ln(sec(x)) + C.

Answered by Jose Nicolas B. Maths tutor

2432 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The Volume of a tin of radius r cm is given by V=pi*(40r-r^2-r^3). Find the positive value of r for which dV/dr=0 and find the value of V for this r.


Using methods of substitution solve the following simultaneous equations: y - 2x - 1 = 0 and 4x^2 + y^2 - 25 = 0


Write 5x^2 + 30x + 36 in the form 5(x+A)^2+B where A and B are integers to be found.Then write the equation of symmetry for the graph of 5x^2 + 30x + 36


The polynomial p(x) is, p(x)= x3-5x2-8x+48.Use the Factor Theorem to show that (x + 3)is a factor of p(X)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences