Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.

Substitution of 'u=1+sin(x)' is required.Differentiating this with respect to x gives cos(x)... therefore du=1/cos(x) dxmultiplying that through leaves the integral of sin(x)(1+sin(x))^3 which therefore can be replaced using the substitution of u=1+sin(x) to give the integral of (u-1)u^3 with respect to 'u' since sin(x) is equal to 'u-1.'Expanding this gives the simple integral of u^4 - u^3.Evaluating gives u^5/5 - u^4/4 +C.Replacing back with the initial substitution gives the answer as (1 +sin(x))^5/5 - (1+sin(x))^4/4 +C

Related Maths A Level answers

All answers ▸

Differentiate 6x^(7/2)-5x^2+7


A geometric progression has first term 3 and second term -6. State the value of the common ratio.


A child of m1=48 kg, is initially standing at rest on a skateboard. The child jumps off the skateboard moving horizontally with a speed v1=1.2 ms^-1. The skateboard moves with a speed v2=16 ms^-1 in the opposite direction. Find the mass of the skateboard.


y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences