Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.

Substitution of 'u=1+sin(x)' is required.Differentiating this with respect to x gives cos(x)... therefore du=1/cos(x) dxmultiplying that through leaves the integral of sin(x)(1+sin(x))^3 which therefore can be replaced using the substitution of u=1+sin(x) to give the integral of (u-1)u^3 with respect to 'u' since sin(x) is equal to 'u-1.'Expanding this gives the simple integral of u^4 - u^3.Evaluating gives u^5/5 - u^4/4 +C.Replacing back with the initial substitution gives the answer as (1 +sin(x))^5/5 - (1+sin(x))^4/4 +C

Related Maths A Level answers

All answers ▸

Express 2cos(x) + 5sin(x) in the form Rsin(x + a) where 0<a<90


Find the binomial expansion of (-8+4x)^(2/3) up to and including the term in x^2.


Find the equation of the tangent to the curve y = 2x^2 + x - 1 at the point where x = 1.


For a given function F(x), what does the graph of the function F(x+2) look like in comparrison to F(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences