Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.

Substitution of 'u=1+sin(x)' is required.Differentiating this with respect to x gives cos(x)... therefore du=1/cos(x) dxmultiplying that through leaves the integral of sin(x)(1+sin(x))^3 which therefore can be replaced using the substitution of u=1+sin(x) to give the integral of (u-1)u^3 with respect to 'u' since sin(x) is equal to 'u-1.'Expanding this gives the simple integral of u^4 - u^3.Evaluating gives u^5/5 - u^4/4 +C.Replacing back with the initial substitution gives the answer as (1 +sin(x))^5/5 - (1+sin(x))^4/4 +C

Answered by Maths tutor

5017 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I find the correct list of solutions whilst solving a trigonometry equation?


Show that cosec(2x) + cot(2x) = cot(x)


What is an easy way to remember how sin(x) and cos(x) are differentiated and integrated?


Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning