The line l1 has equation 4y - 3x = 10. Line l2 passes through points (5, -1) and (-1, 8). Determine whether the lines l1 and l2 are parallel, perpendicular or neither.

To determine the answer the gradient of both lines must be found. To find the gradient of line l1 the equation can be rewritten in the form y = mx + c. 4y - 3x = 10 so y = 3/4 x + 5/2. From this equation the gradient of the line is 3/4.
If the two lines are parallel the gradient of l2 will be the same, if they are perpendicular the gradient will be -4/3.
To find the gradient of l2 the difference between the y and x coordinates is found, the gradient is the dy/dx = (-1 - 8) / (5 - -1) = -3/2. As this gradient is not equal to either the gradient of l1 or -4/3 the two lines are neither parallel or perpendicular.

Answered by Rosie M. Maths tutor

14038 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A rollercoaster stops at a point with GPE of 10kJ and then travels down a frictionless slope reaching a speed of 10 m/s at ground level. After this, what length of horizontal track (friction coefficient = 0.5) is needed to bring the rollercoaster to rest?


What is the quotient rule and how is it applied?


Find the turning point of the function y=f(x)=x^2+4x+4 and state wether it is a minimum or maximum value.


How do I solve a simultaneous equation in two variables when they have with different coefficients?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences