Answers>Maths>IB>Article

Solve for x in the following equation: e^x + 10e^(-x) = 7

First of all, we bring the 7 to the left side of the equation to get: ex-7+10e-x=0. Then, by multiplying both sides of the equation by ex, we can get an equation in the form of a quadratic equation: e2x-7ex+10=0. By setting y = ex, the quadratic nature of the equation can be seen as it simplifies to y2-7y+10=0. From GCSE maths, we know this can be factorised to obtain (y-5)(y-2)=0 and see that y=2 or y=5. The final step for this question is to sub ex back into the equation and solve for x using the ln laws: ex = 2 or 5; therefore x = ln2 or ln5.

Answered by Leonardo B. Maths tutor

3510 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the equation sec^2(x) - 4tan(x)= -3 , 0 ≤x≤ 2π


The sum of the first n terms of an arithmetic sequence is Sn=3n^2 - 2n. How can you find the formula for the nth term un in terms of n?


Consider f (x) = logk (6x - 3x 2 ), for 0 < x < 2, where k > 0. The equation f (x) = 2 has exactly one solution. What is the value of k?


Find the first and second order derivative of the function, F(x)= 3x^3 - 7 + 5x^2, and then identify the maximum or minimum points.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences