Explain how nucleophilic substitution for a haloalkane actually occurs?

In a haloalkane, not all of the bonds are the same. We have to consider the fact that the halogen atom (for instance a bromine atom) is more electronegative than either carbon or hydrogen atoms, and has a tendency to withdraw electron density towards itself. This makes the C-Br bond polarised. The carbon atom has had electron density removed from itself, and now has a partial positive charge. Thus, it is more susceptible to attack by a species with a high electron density, or a negative charge. Such a species is called a nucleophile. A cyanide ion, for example, has a formal negative charge on the carbon.As like and unlike charges attract, the negative cyanide ion will attack the positive carbon atom, and in doing so will displace the bromide ion. This is nucleophilic substitution.

Answered by Naman K. Chemistry tutor

1527 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

What is meant by the term optical isomerism?


What is the position of chemical equilibrium and how can it change? (A-Level/high GCSE)


Why is a benzene ring so stable (3 marks)?


The equilibrium N2O4 (g) -->--< 2NO2 (g) is set up when N2O4 dissociates. When 0.0370 moles of N2O4 dissociates at 25 degrees in a 0.5dm3 sealed container, 0.0310 moles of N2O4 remains at equilibrium. Calculate the value of Kc for this reaction.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences