Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1

The volume of revolution is given by integrating Piy2 dx from 0 to 1.Squaring, y2=1/(x2+2x+2)Completing the square, we see that y=1/((x+1)2+1)Make the substitution u=x+1, so du=dx. When x is 0, respectively 1, u is 1, respectively 2. So the volume is the integral of Pi/(u2+1) du from 1 to 2. This is Piarctan(u) evaluated from 1 to 2, which is Pi*(arctan(2)-arctan(1)). In a calculator, we see this is roughly 1.011 and this is the desired volume.

Related Further Mathematics A Level answers

All answers ▸

A mass m=1kg, initially at rest and with x=10mm, is connected to a damper with stiffness k=24N/mm and damping constant c=0.2Ns/mm. Given that the differential equation of the system is given by d^2x/dt^2+(dx/dt *c/m)+kx/m=0, find the particular solution.


Given that z = a + bj, find Re(z/z*) and Im(z/z*).


What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


Find all the cube roots of 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences