A curve C has equation y = x^2 − 2x − 24sqrt x, x > 0. Prove that it has a stationary point at x=4.

A stationary point is where the curve has 0 gradient. So to prove that x=4 is a stationary point, we must find the equation of the first derivative. To do this, differentiate x2 - 2x - 24sqrtx. It might help to rewrite all terms as indices: x2 -2x -24x1/2.Now we can differentiate. Differentiate by multiplying by the power and then taking one from the power, to give: 2x - 2 - (24 x 1/2)x-1/2 which simplifies to 2x - 2 -12x-1/2Now substitute x=4 in to find the gradient of the curve when x=4: dy/dx = (2 x 4) -2 - 12(4-1/2) = 8 - 2 - 12/2 = 0 Hence there is a stationary point at x=4 as the gradient here is equal to 0

Answered by Elizabeth F. Maths tutor

6847 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does integration by parts work?


Find dy/dx when y = 5x^6 + 4x*sin(x^2)


Solve the pair of simultaneous equations; (1) y + 4x + 1 = 0, (2) y^2 + 5x^2 + 2x = 0 .


Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences