A curve C has equation y = x^2 − 2x − 24sqrt x, x > 0. Prove that it has a stationary point at x=4.

A stationary point is where the curve has 0 gradient. So to prove that x=4 is a stationary point, we must find the equation of the first derivative. To do this, differentiate x2 - 2x - 24sqrtx. It might help to rewrite all terms as indices: x2 -2x -24x1/2.Now we can differentiate. Differentiate by multiplying by the power and then taking one from the power, to give: 2x - 2 - (24 x 1/2)x-1/2 which simplifies to 2x - 2 -12x-1/2Now substitute x=4 in to find the gradient of the curve when x=4: dy/dx = (2 x 4) -2 - 12(4-1/2) = 8 - 2 - 12/2 = 0 Hence there is a stationary point at x=4 as the gradient here is equal to 0

Answered by Elizabeth F. Maths tutor

6999 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given x = 3sin(y/2), find dy/dx in terms of x, simplifying your answer.


Differentiate the function f(x) = x^2 * e^2x with respect to x


Show that the determinant of the 3x3 matrix (2 1 1 / 2 1 7 / 6 3 5) is equal to zero.


Time, T, is measured in tenths of a second with respect to distance x, is given by T(x)= 5(36+(x^2))^(1/2)+4(20-x). Find the value of x which minimises the time taken, hence calculate the minimum time.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences