A sphere has a surface area of 4m^2, radius r. Another sphere has radius 2r. Calculate the Volume of the second sphere in M^3.

The surface area of a sphere can be calculated using Area = 4 x Pi x r^2. Since we know the surface are of the first sphere is 4m^2, we can write: 4 = 4 x Pi x r^2. This simplifies to r^2 = 0.318. Taking the square root we find that r = 0.564m. The radius of the larger sphere is therefore 2 x 0.564 = 1.128m. Using the formula for the volume of a sphere: (4/3) x Pi x r^3, we can calculate the volume of the second sphere to be 6.018m^3

Answered by Freddie W. Maths tutor

2521 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If x^2-5x+6=0, solve for x.


Solve 2x + 10 = 4x + 6


Solve the quadratic equation x^2 + x - 20 = 0


A gym has 275 members. 40% are bronze members. 28% are silver members. The rest are gold members. Work out the number of gold members.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences