Derive the formula for differentiation from first principles

For a curve of f(x) against x, we can take the general point (x, f(x)) on the curve. By moving horizontally along the x-axis a distance of h, we also have the point (x+h, f(x+h)) on the curve. The gradient of the straight line between these two points is equal to the change in f(x) divided by the change in x, which (using our pair of coordinate points) is (f(x+h)-f(x))/x+h-x. This can be simplified to (f(x+h)-f(x))/h.Therefore, in the limit as h tends to 0 and the second point approaches the first along the curve, the gradient of the line tends to f'(x). This means that f'(x)=limh->0(f(x+h)-f(x))/h.

NG
Answered by Nicola G. Maths tutor

3940 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the turning points of a graph and how do you if the point is a maximum or a minimum?


(FP3 question). Integrate 1/sqrt(3-4x-x^2).


What's the gradient of the curve y=x^3+2x^2 at the point where x=2?


Find the integral of 4x^2 - 10x + 1/(x^(1/2)), with respect to x, in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning