Find the point(s) of intersection of the graphs y=x^2+4x-21 and x+y=-27 using an algebraic method.

As, at the point of intersection, the values of x and y are the same in each graph (otherwise it wouldn't be a point of intersection!), we can approach the problem as solving a pair of simultaneous equations. Since the quadratic expression is already equal to y, we can substitute it into the linear equation, such that x+y=-27 becomes x+(x^2+4x-21)=-27. We can simplify this into the straightforward quadratic equation x^2+5x+6=0, and factorise into (x+2)(x+3)=0. (In order for the expression to equal zero, either x+2=0 or x+3=0, so) x=-2,-3. Substituting x=-2 into either of the initial graphs gives y=-25 (e.g. (-2)+y=-27 => y=-25), and substituting x=-3 into either of the initial graphs gives y=-24; therefore, the two points of intersection are (-2,-25) and (-3,-24).(When solving the simultaneous equations, we could have instead rearranged the linear equation to the form y=-27-x and then, since both (-27-x) and (x^2+4x-21) equal y, formed the quadratic equation x^2+4x-21=-x-27, which is equivalent to the same simplified quadratic equation as above: x^2+5x+6=0.)

Answered by Peter B. Maths tutor

3203 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Bob lives 2km away from Alice and the school is 1km away from Bob. Alice sets off to meet Bob at 8am and she meets him at 8:15 and they carry on walking at the same pace. School starts at 8:20. Do they get to school on time? How early/late are they?


Solve the simultaneous equations 3x+2y=13 and 4x+y=14


Solve these simultaneous equations.....3a+2b = 17 and 8a-2b= 60


Solve the simultaneous equations 'x-2y=3' and 'x^2+2y^2=27'


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences