The points A and B have position vectors 2i + 6j – k and 3i + 4j + k respectively. The line l passes through both A and B. Find a vector equation for the line l.

First you need to find the vector AB. This is equal to -OA+OB.

OA and OB are equal to the position vectors of A and B respectively so

 -OA+OB=  -2i - 6j + k + 3i + 4j + k = i - 2j + 2k = AB 

Then we can take any point on the curve, P, and any point on the curve can be written in the form,

P+c(i - 2j + 2k) where c is an arbitrary constant, we will take P=A so the vector equation of the line l is r= 2i + 6j – k + c(i - 2j + 2k) where c is an arbitrary constant.

AT
Answered by Alex T. Maths tutor

15850 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 5x^3 + 4x^2 + 5x + 9


Find the stationary point of y=3x^2-12x+29 and classify it as a maximum/minimum


Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.


Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences