The points A and B have position vectors 2i + 6j – k and 3i + 4j + k respectively. The line l passes through both A and B. Find a vector equation for the line l.

First you need to find the vector AB. This is equal to -OA+OB.

OA and OB are equal to the position vectors of A and B respectively so

 -OA+OB=  -2i - 6j + k + 3i + 4j + k = i - 2j + 2k = AB 

Then we can take any point on the curve, P, and any point on the curve can be written in the form,

P+c(i - 2j + 2k) where c is an arbitrary constant, we will take P=A so the vector equation of the line l is r= 2i + 6j – k + c(i - 2j + 2k) where c is an arbitrary constant.

AT
Answered by Alex T. Maths tutor

16414 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

OCR C2 2015 Question 8: (a) Use logarithms to solve the equation 2^(n-3) = 18,000 , giving your answer correct to 3 significant figures. (b) Solve the simultaneous equations log2(x) + log2(y) = 8 & log2(x^2/y) = 7.


y= arcos(x). Find dy/dx in terms of x.


A 1kg mass is launched from the ground into the air at an angle of 30 degrees to the horizontal and with initial speed 25 ms^-1. Assuming negligible air resistance, how far from the starting point will the mass travel before it hits the ground?


Given y = 3x^(1/2) - 6x + 4, x > 0. 1) Find the integral of y with respect to x, simplifying each term. 2) Differentiate the equation for y with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning