In the reaction (SO₂ + 2H₂S → 3S + 2H₂O), 44.3g of SO₂ are mixed with 44.3g of H₂S. Calculate the maximum mass of sulfur that could be formed.

1.      Check if the equation is balanced, luckily this one is! 2.      Check if any unit conversions are needed. All masses are in grams, so no problem there. 3.      Using (moles = mass ÷ Mr), calculate: the no. of moles of SO₂ (44.3 ÷ 64.1 = 0.69); and the no. of moles of H₂S (44.3 ÷ 34.1 = 1.30). This is to work out which reagent is in excess. 4.      As there is a molar ratio of 1:2, you can divide the latter answer by 2 to get the expected no. of moles of SO₂ (0.65). Therefore, SO₂ is in excess. 5.      Use (mass = moles x Mr) to find out the mass of sulfur (0.65 x 32.1 x 3 = 62.6g). Remember to multiply by 3 to get the correct mass as you need to consider the molar ratios.

KV
Answered by Kundai V. Chemistry tutor

3829 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Molecules of hydrogen chloride, HCl, and molecules of fluorine, F2, contain the same number of electrons. Hydrogen chloride boils at –85 °C and fluorine boils at –188 °C.Explain why there is a difference in the boiling points of HCl and F2.


Give the IUPAC name for the following molecule and draw its displayed formula: CH3(CH2)3COOH


Describe briefly how you would show that manganese(II) ions catalyse the reaction between manganate(VII) ions and ethanedioate ions, in dilute sulphuric acid.


How can crude oil be used as a source of hydrocarbons?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning