In the reaction (SO₂ + 2H₂S → 3S + 2H₂O), 44.3g of SO₂ are mixed with 44.3g of H₂S. Calculate the maximum mass of sulfur that could be formed.

1.      Check if the equation is balanced, luckily this one is! 2.      Check if any unit conversions are needed. All masses are in grams, so no problem there. 3.      Using (moles = mass ÷ Mr), calculate: the no. of moles of SO₂ (44.3 ÷ 64.1 = 0.69); and the no. of moles of H₂S (44.3 ÷ 34.1 = 1.30). This is to work out which reagent is in excess. 4.      As there is a molar ratio of 1:2, you can divide the latter answer by 2 to get the expected no. of moles of SO₂ (0.65). Therefore, SO₂ is in excess. 5.      Use (mass = moles x Mr) to find out the mass of sulfur (0.65 x 32.1 x 3 = 62.6g). Remember to multiply by 3 to get the correct mass as you need to consider the molar ratios.

Answered by Kundai V. Chemistry tutor

2890 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

How do you decide what the sign of the enthalpy change should be?


Describe how you would differentiate a sample of butanal and butan-2-one.


Write equations for the reaction of propanoic acid with methanol and name any organic products.


Nitrous acid, HNO2, is a weak Bronsted-Lowry acid with a Ka value of 4.43x10-4 mol dm-3. Calculate the pH of 0.375 mol dm-3 of HNO2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences