Prove that the equation y = 3x^4 - 8x^3 - 3 has a turning point at x=2

By definition, turning points occur when the gradient function equals to zero. To prove this we need to differentiate the function given. To differentiate, bring the power down and multiply it by the co-efficient. When we do this we get dy/dx = 12x^3 - 24x^2. Subbing in the value x=2 into this function we get dy/dx = 0. It is important to write a concluding statement with 'prove that' questions. You should write something like ' As the gradient function equals zero at x=2, a turning point must occur here as the gradient is zero' in order to obtain full marks.

Answered by Maths tutor

3007 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x+3y+3=0. The line AB is parallel to the line with equation y=mx+7 . Find the value of m.


How do you do simple integration?


a)Given that 10 cosec^2(x) = 16 - 11 cot(x) , find the possible values of tan x .


What is a geometric series?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences