Find the solution of the differential equation: dy/dx = (xy^2 + x)/y. There is no need to rearrange the solution to be in terms of y.

This is a separable differential equation, so the first step is to separate the two variables. Factorise out the x from the top bracket so that the equation becomes: dy/dx = x(y^2+1)/yThe next step is to multiply the dx to the right hand side, and move the (y^2+1)/y to the left hand side, making it now look like: y/(y^2+1) dy = x dxFrom there, all that has to be done is to integrate both sides, the left hand side on closer inspection is of the form f’(y)/f(y), with a factor of 2 missing, so it becomes 1/2 log(y^2+1) while the right hand side is a straightforward integral and becomes 1/2 x^2. Putting all of this together and not forgetting the constant of integration, the overall solution is:log(y^2+1) = x^2 + c (Both sides have been multiplied by 2)

TS
Answered by Thomas S. Maths tutor

3505 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral of (2(x^3)-7)/((x^4)-14x)


Differentiate f(x) = x sin(x)


"Solve cos(3x +20) = 0.6 for 0 < x < 360" - why are there more than one solution, and how do I find all of them?


Simplify (7+sqrt(5))/(sqrt(5)-1), leaving the answer in the form a+b*sqrt(5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning