Find the integral of ln(x)

The best way to approach this question is to solve it using integration by parts.First, recognise that ln(x) = 1 x ln(x), and set du/dx = 1 and v = ln(x). We then find that u = x, and dv/dx = 1/x.With this we can easily see, using our rules of integration by parts, that the Integral(lnx) = xln(x) - Integral(x/x) = xln(x) - Integral(1) = xlnx - x (+ some constant).I really like this question because while it seems hard to get started, once you notice that ln(x) = 1 x ln(x), it becomes a simple Integration by Parts problem!

FG
Answered by Finn G. Maths tutor

3546 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate y= x^3+3x^2-4x-7 between x values 1 and 3


Find the exact solution of the following equation: e^(4x-3) = 11


Solve the following: sinx - cosx = 0 for 0≤x≤360


Where does the circle (x-6)^2+(y-7)^2=4 intersect with y=x+3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning