Find the integral of ln(x)

The best way to approach this question is to solve it using integration by parts.First, recognise that ln(x) = 1 x ln(x), and set du/dx = 1 and v = ln(x). We then find that u = x, and dv/dx = 1/x.With this we can easily see, using our rules of integration by parts, that the Integral(lnx) = xln(x) - Integral(x/x) = xln(x) - Integral(1) = xlnx - x (+ some constant).I really like this question because while it seems hard to get started, once you notice that ln(x) = 1 x ln(x), it becomes a simple Integration by Parts problem!

Answered by Finn G. Maths tutor

3080 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the derivative of the exponential function itself?


(The question is too long so it's marked at the top of the answer space, sorry for any inconveniences)


How do I find the equation of the normal to the curve y=x^2 at the point (x1,y1)? Where x1=2 and y1=4 .


How do I find the reultant force acting on an object sitting on a slope?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences