Find the integral of ln(x)

The best way to approach this question is to solve it using integration by parts.First, recognise that ln(x) = 1 x ln(x), and set du/dx = 1 and v = ln(x). We then find that u = x, and dv/dx = 1/x.With this we can easily see, using our rules of integration by parts, that the Integral(lnx) = xln(x) - Integral(x/x) = xln(x) - Integral(1) = xlnx - x (+ some constant).I really like this question because while it seems hard to get started, once you notice that ln(x) = 1 x ln(x), it becomes a simple Integration by Parts problem!

FG
Answered by Finn G. Maths tutor

3858 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradients of y = 3x^2 − (2/3) x + 1 at x = 0


Find all the stationary points of the curve: y = (2/3)x^3 – (1/2)x^2 – 3x + 7/6 and determine their classifications.


Why does 'x' need to be in radians to differentiate 'sin x'?


Express 2x^2 +8x +7 in the form A(x+B)^2 + C, where A, B and C are constants


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning