Prove by contradiction that there is an infinite number of prime numbers.

The 'by contradiction' tells us we need to assume the opposite to begin with: 1) Let's assume there is a finite number of prime numbers2) Let P be the largest prime number (the last one) 3) if we multiply all the prime numbers up to and including P: 2x3x5x7...xP=q (the multiple of all prime number up to and including P)4) consider q+1 5) Will it be divisible by any prime P or less? no, as q is divisible by those and q+1 is only 1 more.6) So this means that either q+1 is Prime, or it has a prime factor larger than P.7) But P is the largest prime factor - this is a contradiction as there must exist a prime larger than PHence there is an infinite number of prime numbers

Answered by Charlotte L. Maths tutor

14422 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the funtion (x-3)(x^2+3x+1) has two stationary points and give the co-ordinates of these points


How do you differentiate a function comprised of two functions multiplied together?


A cuboid has a rectangular cross section where the length of the rectangle is equal to twice its width x cm. THe volume is 81 cm^3. a) show that the total length L cm of the cuboid is given by L=12x+162/x^2


How to draw the inverse of a function ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences