Prove by contradiction that there is an infinite number of prime numbers.

The 'by contradiction' tells us we need to assume the opposite to begin with: 1) Let's assume there is a finite number of prime numbers2) Let P be the largest prime number (the last one) 3) if we multiply all the prime numbers up to and including P: 2x3x5x7...xP=q (the multiple of all prime number up to and including P)4) consider q+1 5) Will it be divisible by any prime P or less? no, as q is divisible by those and q+1 is only 1 more.6) So this means that either q+1 is Prime, or it has a prime factor larger than P.7) But P is the largest prime factor - this is a contradiction as there must exist a prime larger than PHence there is an infinite number of prime numbers

Answered by Charlotte L. Maths tutor

12048 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 16x^2 + 7x - 3, find dy/dx [3 marks]


Given that y = (sin(6x))(sec(2x) ), find dy/dx


"Why is Mathematics important, I wont use any of it when I start work?"


Find the equation of the tangent line to the curve y = 2x^2 - 4x + 3 at the point (3,9)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences