Prove by contradiction that there is an infinite number of prime numbers.

The 'by contradiction' tells us we need to assume the opposite to begin with: 1) Let's assume there is a finite number of prime numbers2) Let P be the largest prime number (the last one) 3) if we multiply all the prime numbers up to and including P: 2x3x5x7...xP=q (the multiple of all prime number up to and including P)4) consider q+1 5) Will it be divisible by any prime P or less? no, as q is divisible by those and q+1 is only 1 more.6) So this means that either q+1 is Prime, or it has a prime factor larger than P.7) But P is the largest prime factor - this is a contradiction as there must exist a prime larger than PHence there is an infinite number of prime numbers

CL
Answered by Charlotte L. Maths tutor

18787 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate $$\int xe^x \mathop{\mathrm{d}x}$$.


Explain the Chain Rule


Find the x coordinate of the stationary points of the curve with equation y = 2x^3 - 0.5x^2 - 2x + 4


How would I sketch the graph sin(x) + sin(2x - π/2) in my exam?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning