Prove by contradiction that there is an infinite number of prime numbers.

The 'by contradiction' tells us we need to assume the opposite to begin with: 1) Let's assume there is a finite number of prime numbers2) Let P be the largest prime number (the last one) 3) if we multiply all the prime numbers up to and including P: 2x3x5x7...xP=q (the multiple of all prime number up to and including P)4) consider q+1 5) Will it be divisible by any prime P or less? no, as q is divisible by those and q+1 is only 1 more.6) So this means that either q+1 is Prime, or it has a prime factor larger than P.7) But P is the largest prime factor - this is a contradiction as there must exist a prime larger than PHence there is an infinite number of prime numbers

Answered by Charlotte L. Maths tutor

14176 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do i find dy/dx in terms of t for two parametric equations that are in terms of t.


How would you differentiate the term 3x^3-2x^2+x-10


How do you find the acute angle between two intersecting lines whos equations are given in vector form?


The line l1 has equation 2x + 3y = 26 The line l2 passes through the origin O and is perpendicular to l1 (a) Find an equation for the line l2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences