What is the product rule in differentiation?

The product rule is a special rule that exists for differentiating products of two (or more) functions. It states: If y=uv, then dy/dx= u(dv/dx) + v(du/dx). So when we have a product to differentiate we can use this formula.For example, suppose we want to differentiate y=x2(cos3x). In this question u=x2 and our v=cos(3x). So following the formula, our first step is to differentiate the u and v terms. du/dx=2x and dv/dx= -3sin(3x). We now put all these results into the given formula:dy/dx= u(dv/dx) + v(du/dx) = x2 x (-3sin3x) + 2x x cos3x We can tidy this answer up by noticing there is a common factor of x giving us this as a final answer: dy/dx= x(-3xsin3x+ 2cos3x )

Answered by Ife A. Maths tutor

3581 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A tank is filled with water up to the height H0. At the bottom of the tank, there is a tap which is opened at t=0. How does the height of liquid change with time?(Hint: dH/dt is proportional to -H)


Integrate x^2 + 2x + 5x^-1


Mechanics (M1): Particle moving on a straight line with constant acceleration (Relationships of the 5 Key Formulae)


If y^3 = 8.08, approximate y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences