Rationalise the complex fraction: (8 + 6i)/(6 - 2i)

The problem with this fraction is the "i" on the denominator, it is not rational. To rationalise this fraction we use the complex conjugate.

This sounds more complicated than it is. If a + ib is a complex number, then a - ib is its conjugate. The only thing that changes is that the imaginary part of the number changes its sign.

To rationalise the fraction you multiply both top and bottom of the fraction by the the complex conjugate of the denominator.

(8 + 6i)/(6 - 2i) * (6 + 2i)/(6 + 2i)

To make this less messy in text I will solve the top and bottom separately. First the top:

(8 + 6i)*(6 + 2i) = 48 + 16i + 36i + 12i^2 = 48 + 52i - 12 = 36 + 52i

Then the bottom:

(6 - 2i)*(6 + 2i) = 36 - 12i + 12i - 4i^2 = 36 + 4 = 40

Putting these together gives:

(36 + 52i)/40 

Simplified this is:

9/10 + (13/10)i

HC
Answered by Harry C. Maths tutor

9560 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y = x - 2 and y^2 + x^2 = 10


how to find flight time/distance and greatest hight of projectiles?


Integrate x^2e^x with respect to x between the limits of x=5 and x=0.


How do you sketch the graph of a function?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning