Rationalise the complex fraction: (8 + 6i)/(6 - 2i)

The problem with this fraction is the "i" on the denominator, it is not rational. To rationalise this fraction we use the complex conjugate.

This sounds more complicated than it is. If a + ib is a complex number, then a - ib is its conjugate. The only thing that changes is that the imaginary part of the number changes its sign.

To rationalise the fraction you multiply both top and bottom of the fraction by the the complex conjugate of the denominator.

(8 + 6i)/(6 - 2i) * (6 + 2i)/(6 + 2i)

To make this less messy in text I will solve the top and bottom separately. First the top:

(8 + 6i)*(6 + 2i) = 48 + 16i + 36i + 12i^2 = 48 + 52i - 12 = 36 + 52i

Then the bottom:

(6 - 2i)*(6 + 2i) = 36 - 12i + 12i - 4i^2 = 36 + 4 = 40

Putting these together gives:

(36 + 52i)/40 

Simplified this is:

9/10 + (13/10)i

HC
Answered by Harry C. Maths tutor

10126 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express the following in partial fractions: (x^2+4x+10)/(x+3)(x+4)(x+5)


f(x) = 2 / (x^2 + 2). Find g, the inverse of f.


Differentiate y=(3+sin(2x))/(2+cos(2x))


A man travels 360m along a straight road. He walks for the first 120m at 1.5ms-1, runs the next 180m at 4.5ms-1, and then walks the final 60m at 1.5ms-1. A women travels the same route, in the same time. At what time does the man overtake the women?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning